Innovative Energy Saving Proposal

Zero Running Cost No

Maintenance

Fluid Agitation Device

Patent Applications Filed for International & Japan Markets

Electric Power Saving with Agitation Device for Industrial Air-conditioning System

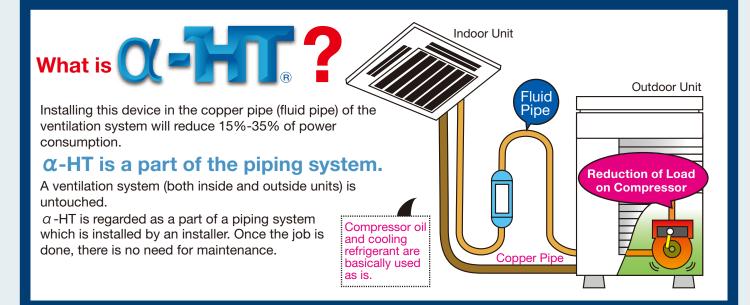
Unprecedented Innovative Technology Development

90% of air-conditioning power is consumed by an outdoor compressor. Accordingly, the only way for energy saving is to reduce compressor load.

Installation of α-HT1000 substantially reduces fluid-flow resistance!!

Testimonials with many installation cases! Astounding Energy-saving Result with Innovative Technology

DD Machine's creative idea coupled with ingenious technology enabled achieving 15-35% energy savings.

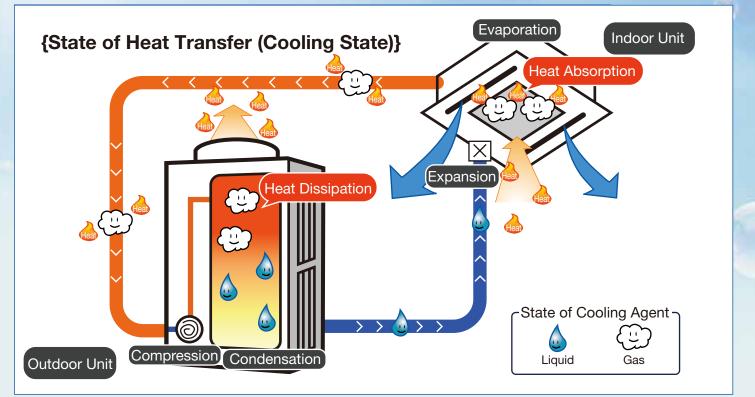

cooling heating

Fan & Others share

0%

909

The key for electric power reduction of ventilation system for both cooling and heating is this device!



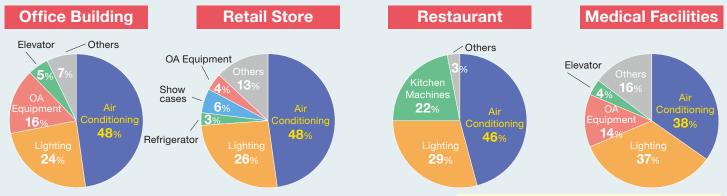
The function of cooling refrigerant which impacts efficiency

Cooling refrigerant plays an important role carrying thermal energy between the outdoor and indoor units. Through the phase-change between liquid and gas, refrigerant carries thermal energy.

The system's efficiency largely depends upon how well the cooling refrigerant's liquefaction (condensation) and vaporization (evaporation) process is taking place in carrying heat energy.

Due to the environment, usage and the air conditioning system's operating conditions, there are many cases where cooling agent is not completely liquefied.

Incomplete liquefaction of cooling refrigerant causes insufficient heat transfer during evaporation. As a result, an inefficient operation takes place, causing higher electrical bill.


```
Incomplete liquefaction of cooling refrigerant
```

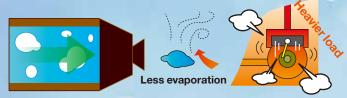
Deteriorated heat transfer efficiency

Higher electric bill

An air conditioning system occupies over 40% of the total electric power consumption.

Typical facilities such as office buildings and retail stores' air conditioning occupy 48% of the electric power consumption, medical institutions occupy 38%. Almost all facilities' air conditioning systems consume around 40% of electric power. Accordingly, it can be said that **"managing an air conditioning system can control energy efficiency"**. We should challenge to break this wall at first.

Source: Japan Resource Energy Agency (Power Consumption Plan)


Two energy saving benefits attributable to reduction of compressor load with use of $\alpha\text{-HT}$

Enhancement of cooling agent's liquefaction

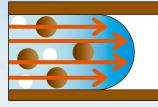
Reduction of fluid-flow resistance

If gas gets mixed in the cooling agent's liquefaction process

Heat transfer gets deteriorated, hence the compressor load increase in the system causing increase of electric power requirement.

When α -HT is inserted in the system

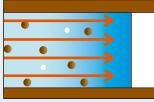
Increased Vaporization Heat


Liquefaction is accelerated with α -HT's agitation function, leading reduction of compressor load which in turn reduces electric power consumption.

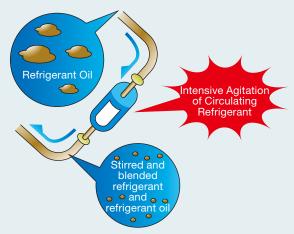
Incomplete liquefaction of refrigerant from the compressor generates pulsation, which in turn destabilizes the expansion valve. The α -HT remedies this problem, hence allows more stable pressure.

 Miniaturization of freezer oil 	
II	
 Macromolecular Liquefaction 	

Normal flow of circulating refrigerant



Viscosity of refrigerant becomes resistance which pushes up compressor's load =Increased Power Consumption


Bringing liquid-flow resistance in the pipe to nearly zero

Significant reduction of compressor load

Flow of circulating refrigerant with α -HT

Viscosity of refrigerant becomes less resistant, which decreases compressor's load =Reduction of Power Consumption

The first Japan Super-Energy Saving Award

Grand Prize Award

The Selection Board of General Incorporated Association Japan Emission Amount Dealing Support Foundation recognized not only energy reduction, but also environmentally friendly and safety concerns of the device. These were used for their award assessment criteria.

[Appraisal Points]

- •The temperature at output opening must be lower and must be confirmed for energy saving.
- ·A substantial reduction of peak-demand warnings

Actual Performance Result of α -HT

Region	Type of Refrigerant	Reduction Rate of Power Consumption
Aichi Prefecture	R407	33.5%
Osaka Prefecture	R410	25.9 %
Ehime Prefecture	R410	27.7 %
Tochigi Prefecture	R410	29.1 %
Kanagawa Prefecture	R410	31.5%
Osaka Prefecture	R410	32.4 %

*It is not meant to guarantee the above energy saving rates. It varies depending upon the environment and temperature changes.

Characteristics of α -HT

Installation of α -HT is simply inserting into the existing pipelines.

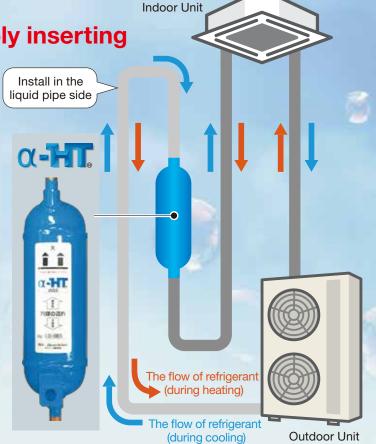
 α -HT needs to be inserted in the liquid pipe between the condensation unit and expansion valve.

Position of a condensation unit and an expansion valve may vary depending upon the ventilation structure. In order to determine the installation point, it would be necessary to check the model number of the air conditioner in advance.

*Use the compressor oil and refrigerant as specified.

Absolutely no running cost.

No water nor electric power are required to run the device.


required. No consumables, no necessity for parts replacement

No maintenance

No need for special tools

Easy installation

Not only commercial-use air conditioning system, it also works for heat pump system with high temperature/pressure refrigerant.

*Works with new refrigerant R32

Installation Method

Pump out the current refrigerant in the pipe.

Insert α -HT between the cutoff pipes.

Apply silver welding in order to prevent any gas leakage.

After installation of the device, put thermo-insulator.

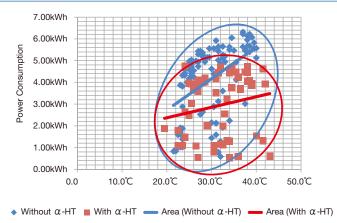
Completion of installation

S Hospital (Kanagawa Prefecture) Installation Outcome Report

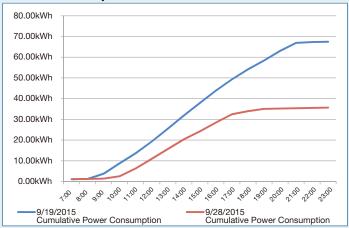
Comparison of Power Consumption

Installation Photo

Total Power Usage


Date	9/19	9/28
Total Power Consumption	67.47kWh	35.68kWh
Operating Time Period	13 hours	10 hours
Total Power Consumption from 10:00 to 19:00	54.64kWh	33.66kWh
Average Power Consumption between 10:00 to 19:00	5.46kWh	3.37kWh
Amount of Power Saving	-20.98kWh	
Rate of Power Reduction	38.4%	

Power Consumption Comparison Data


2015

					2010
Date	9/19	9/28	Saving Amount	9/19 Outside Temperature	9/28 Outside Temperature
0:00	0.14kWh	0.14kWh	0.00kWh	20.5℃	20.5℃
1:00	0.14kWh	0.14kWh	0.00kWh	20.0℃	20.5℃
2:00	0.14kWh	0.14kWh	0.00kWh	19.0℃	20.5℃
3:00	0.14kWh	0.14kWh	0.00kWh	19.0℃	20.0℃
4:00	0.14kWh	0.14kWh	0.00kWh	18.5℃	19.5℃
5:00	0.14kWh	0.14kWh	0.00kWh	18.5℃	20.0℃
6:00	0.14kWh	0.14kWh	0.00kWh	18.5℃	19.5℃
7:00	0.14kWh	0.14kWh	0.00kWh	22.0℃	22.0℃
8:00	0.14kWh	0.14kWh	0.00kWh	26.0℃	27.5℃
9:00	2.53kWh	0.14kWh	2.39kWh	27.5℃	28.5℃
10:00	5.03kWh	1.16kWh	3.87kWh	31.5℃	32.0℃
11:00	4.85kWh	3.77kWh	1.09kWh	32.0℃	34.5℃
12:00	5.63kWh	4.65kWh	0.98kWh	34.0℃	34.5℃
13:00	6.22kWh	4.72kWh	1.50kWh	38.5℃	38.0℃
14:00	6.32kWh	4.67kWh	1.64kWh	37.0℃	38.0℃
15:00	6.08kWh	3.88kWh	2.20kWh	39.0℃	39.0℃
16:00	5.92kWh	4.23kWh	1.69kWh	31.0℃	36.0℃
17:00	5.43kWh	4.00kWh	1.44kWh	27.0℃	28.0℃
18:00	4.83kWh	1.49kWh	3.35kWh	25.5℃	24.0℃
19:00	4.32kWh	1.10kWh	3.22kWh	25.5℃	23.5℃
20:00	4.59kWh	0.16kWh	4.43kWh	25.0℃	22.5℃
21:00	3.88kWh	0.16kWh	3.72kWh	23.0℃	21.5°C
22:00	0.41kWh	0.16kWh	0.25kWh	21.5℃	20.5℃
23:00	0.16kWh	0.14kWh	0.02kWh	20.5℃	20.5℃

Outdoor Temperature vs. Power Consumption Scatter Chart

Comparison of Cumulative Power Consumption with/without α-HT

From Purchase to Installation Process

Inquiry	Please feel free to inquire by telephone call or email. *May ask a simple question regarding your system condition.	
Personal Visit to Explain	Will bring a pamphlet with detailed explanation.	
Generating a Simulation	Upon submission of a check sheet, we will make an annual cost saving simulation at free of charge.	
Investigation of the Location and Site	Inquire about your requirements, then check the condition of the existing system.	
Proposal	We will make a proposal based upon the simulation and quotation.	
Purchase Order	We would like to discuss the best installation date and time.	
Installation Work	A warranty document is issued upon confirmation of the serial number.	

Actual Installation Cases

Specification of [α -HT 1000]

Item	Description
Category	JIS Refrigerant Coupling B8707 3 Class
External Dimensions	Main Body W89 x L280mm
Coating	Blue: Japan Refrigeration/Air Conditioning Industry Standard Spec IRA 9002-1991
Copper Pipe Diameter	Φ12.7mm/Φ15.88mm(Option)
Tolerable Pressure	More than 11Mpa
Management	Complete management by Traceability Enforcement (Protection against imitation)

Safety & Related Regulations

·Refrigeration/Air Conditioning Safety Regulation

Consigned Manufacture

- Pressure Container Structural
- ·ISO14001/ISO9600 Certified Factories
- ·Certified Factories for High Pressure Gas Manufacturing Facilities

α-HT1000

Seal

Design Implementation ·Obtained Insurance for PL

- ·It cannot be used for a home-use small-size Room Air-conditioning system. (For commercial-use small-size HT device will become available soon)
- ·One α -HT 1000 can handle up to 10-hourse power system.
- •Two α -HT 1000 should be used in parallel for 20-hourse power system.
- •Absorption and Tarbo type refrigerators are not useable.
- ·Please contact our sales companies for any other questions and inquiries.

[Development & Manufacturing]

DD Machine Company Inc.

Kioimachi Yamamoto Building 2F 3-chome Kioimachi, Chiyoda-ku, Tokyo 102-0094 Japan